技术文章

TECHNICAL ARTICLES

当前位置:首页技术文章用于微流体应用的激光制造微通道表征

用于微流体应用的激光制造微通道表征

更新时间:2024-05-20点击次数:136

cs6-USC-laser-for-microfluidic-H-przee9am0ar4nvps9fpop0zsgprgdq0tbdrot4osu8.jpg

用于微流体应用的激光制造微通道表征

利用 Sensofar 的 3D 光学轮廓仪 S neox,我们可以轻松表征通过激光技术制造的微通道的形貌


因微流体领域呈现出的巨大应用潜力,它在过去几年中经历了巨大的发展。直接微流体应用的一些例子包括芯片实验室、芯片器官、护理点器件、细胞捕获、化学和生物学分析。在用途方面,微流控器件有不同的几何形状,其复杂程度可根据需要而调整,但是构成这些微流控器件的基本结构之一是微通道。

已知有几种材料可用于制造微通道,而材料的适用性取决于制造技术。这些材料中包括聚合物、硅或玻璃。制造技术的示例包括软刻蚀、光刻和热熔技术。但是,当使用钠钙玻璃作为材料时(因其坚固性、耐化学性、透明性和低成本),直接激光刻写便成为最合适的技术之一。其精确且多用途,可快速生成非常复杂的几何图形。而且,由于其非接触性质,因此没有污染物并且不需要洁净室设施。当为此应用目的进行纳米尺度操作时,必须具有非常良好的形貌图,以确保其质量,以及有关通道尺寸的所有信息。在此报告中,通过共聚焦显微镜对通过直接激光写入制造的结构进行了充分表征。

通过直接激光写入在钠钙玻璃上制造微通道。使用的激光器是 Rofin Nd:YVO4 系统,脉冲持续时间为 20 ns,中心波长为 1064 nm。该装置由检流计系统构成,该检流计系统处理,并且无需样品移动即可制造复杂的结构。使用焦距为 100 mm 的透镜将激光束聚焦在基板表面上,以确保工作区域面积为 80×80 mm2。钠钙玻璃购自当地供应商。
为了获得适当的结构纵横比,操作员对样品进行了多次激光扫描。因此对形貌演变进行研究。研究人员通过 1 到 10 次扫描制造出微通道。使用 Sensofar S neox 3D 光学轮廓仪,使用 20 倍放大倍率物镜捕获结构区域的共聚焦图像。生成表面轮廓,并描绘出激光扫描产生的微通道深度变化(图 1)。
微通道壁的粗糙度值是一个须获得的关键值,因为它必须足够低才可用于微流体应用。利用 Sensofar S neox 3D 光学轮廓仪和 SensoMAP 分析软件,研究人员得以从小面积获得粗糙度值。本研究选择了通过 50 倍放大倍率物镜获得的八次激光扫描微通道底部的形貌(图 2)。

cs6-USC-laser-for-microfluidic-1.png

em>图 1</em>. 不 同 激 光 扫 描 次 数 下 的 多 个 微 通 道 的 共 聚 焦 图 像 (左:一次,右:十次)。生 成 的 通 道 轮 廓

cs6-USC-laser-for-microfluidic-2.png

<em>图 2</em>. 根据 ISO 25178 标准,用激 光 制 造 的 一 个 微 通 道 的   3 D   形 貌 以 及 通 道 底 部 的 粗 糙 度 参 数

凭借激光直接写入的多功能性和精确度,我们可以制造出几种微流控器件。在这里,我们显示了使用 20 倍物镜获得的某些示例的部分 3D 共聚焦形貌图(图 3)。

cs6-USC-laser-for-microfluidic-3.png

em>图 3</em>. 3D 共 聚 焦 形 貌 图 详 细 描 绘 了 一 些 在 钠 钙 玻 璃 操 作 激 光 的 一 些 微 流 控 器 件 示 例

利用 Sensofar 的 3D 光学轮廓仪 S neox,我们可以轻松表征通过激光技术制造的微通道的形貌。
使用具有 20 倍放大倍率物镜的共聚焦技术分析激光扫描的结构轮廓的演变。此外,结合 SensoMAP 分析软件,可以计算出制造出的通道的粗糙度参数。在这个例子中,获取共聚焦形貌时使用了50 倍放大放大倍率物镜。
总之,通过使用 S neox 3D 光学轮廓仪,可以在尺寸和粗糙度上**表征每个结构。

服务热线:17701039158
公司地址:北京市房山区长阳镇
公司邮箱:qiufangying@bjygtech.com

扫码加微信

Copyright©2024 北京仪光科技有限公司 版权所有    备案号:京ICP备2021017793号-2    sitemap.xml

技术支持:化工仪器网    管理登陆

服务热线
17701039158

扫码加微信